10 trucuri pentru a simplifica operațiile matematice
Sfaturi / / December 19, 2019
Nu atât de mult timp în urmă, pe Layfhakere o revizuire a cărții „The Numbers Magic“, care conține un număr foarte mare de trucuri matematice. Cartea nu ne lasă indiferenți, și l-am ales din 10 dintre cele mai interesante sfaturi pentru a simplifica operațiile matematice.
Recent, după ce a citit cartea "numere magice„Am învățat o cantitate enormă de informații. Cartea descrie zeci de trucuri care simplifică operațiile matematice uzuale. Sa dovedit că înmulțirea și împărțirea lung - este ultimul secol, și nu este clar de ce este încă predată în școli.
Am ales 10 dintre cele mai interesante trucuri și utile și doriți să le împărtășesc cu voi.
Multiplicarea „3 până la 1“ în minte
Înmulțirea numerelor de trei cifre de pe clar - aceasta este o operație foarte simplă. Tot ce trebuie să faceți - este de a sparge o sarcină mare în cele mai multe mici.
exemplu: 320 × 7
- Divizarea numărul 320 pentru o două numere prime: 300 și 20.
- Înmulțire 300 7 7 și 20 în mod individual (2100 și 140).
- Fold numărul rezultat (2240).
Cuadratura numere din două cifre
Cuadratura numere din două cifre nu sunt mult mai dificil. Trebuie să rupă numărul de două și de a obține un răspuns aproximative.
exemplu: 41^2
- Scădeți 1 41-40 primi și se adaugă 1-41 pentru a obține 42.
- Multiply două numere, folosind placa anterioară (40 x 42 = 1680).
- Adăugați pătratul numărul, valoarea pe care am redus și a crescut 41 (1 680 + 1 ^ 2 = 1 681).
Regula cheie aici - pentru a transforma numărul dorit într-un cuplu de alte numere, care se multiplica împreună mult mai ușor. De exemplu, pentru numărul 41 este numărul 42 și 40, pentru numărul de 77 - 84 și 70. Adică, scădem și se adaugă același număr.
erecție instantanee a unui pătrat, care se încheie în 5
Pe piețele de numere care se termină în 5, nu trebuie să tulpina. Tot ce trebuie să faceți - este de a multiplica prima cifră a numărului care este una, și se adaugă la sfârșitul numărul 25.
exemplu: 75^2
- Inmultiti 7 de 8 și de a obține 56.
- Adăugarea la numărul 25 și a obține 5625.
Divizia de număr de o cifră
Împărțirea în minte - este o abilitate utilă. Gândiți-vă cât de des vom împărți numărul în fiecare zi. De exemplu, într-un proiect de lege restaurant.
exemplu: 675: 8
- Ne găsim răspunsuri aproximative prin înmulțirea 8 în numere convenabile, care dau rezultate extreme (8 x 80 = 640 × 90 8 = 720). Răspunsul nostru - 80-ceva.
- Scădeți 640 din 675. Ia numărul 35, trebuie să-l împartă cu 8 și 4 pentru a ajunge la restul de 3.
- Răspunsul nostru final - 84,3.
Noi nu obține cele mai corect răspuns (răspunsul corect - 84.375), dar trebuie să recunosc că, chiar și un astfel de răspuns este mai mult decât suficient.
Simplă obține 15%
Pentru a afla mai repede de 15% din orice număr, trebuie să calculeze mai întâi 10% din ea (se deplasează virgula cu un caracter la stânga), apoi împărțiți numărul rezultat de 2 și adăugați-l la 10%.
exemplu: 15% din 650
- Suntem 10% - 65.
- Găsiți jumătate din 65 - este 32,5.
- Adăugăm 32.5-65 și de a obține 97,5.
truc banal
Poate că noi toți dat pe acest truc:
Gândiți-vă la orice număr. Înmulțim cu 2. Adăugați 12. Se împarte suma de 2. Scădeți-l din numărul inițial.
Ai 6, nu? Orice ai face sa devina realitate, vei primi încă 6. Iată de ce:
- 2x (număr dublu).
- 2x + 12 (se adaugă 12).
- (2x + 12) 2 = x + 6 (divide cu 2).
- x + 6 - x (scade numărul inițial).
Acest truc este construit pe regulile de bază de algebră. Deci, dacă ai auzit vreodată că cineva se gândește la el, trage rânjetul cel mai arogant, face o privire disprețuitoare și spune tuturor un indiciu. :)
Numărul Magic 1089
Acest truc nu există un secol.
Notați orice număr format din trei cifre, numărul de care sunt în ordine descrescătoare (de exemplu, 765 sau 974). Acum, se scrie în ordine inversă, și-l scade din numărul inițial. Pentru acest adăuga același răspuns, numai în ordine inversă.
Indiferent de numărul pe care o alegeți, rezultatul va fi 1089.
rădăcini cub rapide
Pentru a lua rapid rădăcina cub de orice număr, va trebui să vă amintiți cuburi de numere de la 1 la 10:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1 000 |
»
După ce vă amintiți aceste valori, pentru a găsi rădăcina cub de orice număr este pur și simplu elementar.
exemplu: cub rădăcină de 19683
- Ia magnitudinea de mii de (19), și uite, între care este numere (8 și 27). Prin urmare, prima cifră a răspunsului va fi de 2, iar răspunsul se află în intervalul de 20+.
- Fiecare cifră zero-nouă va apărea în tabel la un moment dat ca ultima cifră a cubului.
- De la ultima cifră în problema - 3 (19 683), Aceasta corespunde la 343 = 7 ^ 3. Prin urmare, acesta din urmă cifră este răspunsul - 7.
- Raspuns - 27.
Notă: truc funcționează numai atunci când numărul inițial este un cub întregul număr.
Articolul 70
Pentru a găsi numărul de ani necesari pentru a dubla banii, trebuie să împărțiți numărul 70 pe rata anuală a dobânzii.
exemplu: numărul de ani necesar pentru a dubla banii cu o rată anuală a dobânzii de 20%.
70: 20 = 3.5 ani
regula 110
Pentru a găsi numărul de ani necesari pentru o triplare de bani, trebuie să împărțiți numărul 110 la rata anuală a dobânzii.
exemplu: numărul de ani necesar pentru o triplare de bani cu o rată anuală a dobânzii de 12%.
110: 12 = 9 ani
Matematica - o știință magică. Sunt chiar un pic jenat de faptul că astfel de trucuri simple ar putea să mă surprinde, și chiar nu se poate imagina cat de mult poti invata trucuri mai multe matematice.
Bazat pe cartea "numere magice»
E-bookCumpără la amazon
E-book în engleză